Klare Vision zur Perfektionierung der Protonentherapie
Donnerstag, 29. November 2018
Holger Ostermeyer Presse- und Öffentlichkeitsarbeit,
Universitätsklinikum Carl Gustav Carus Dresden
 
 
 

Einem Dresdner Wissenschaftlerteam am OncoRay ist es zum ersten Mal gelungen, einen Magnetresonanztomographen (MRT) mit einer Protonenstrahleinheit zu kombinieren. Ziel ist es die Präzision dieser Form der Krebstherapie zu verbessern und somit die Treffsicherheit für Tumore zu erhöhen. Selbst wenn die Tumore sich während der Bestrahlung bewegen, wird es möglich sein, durch Echtzeit-MRT Bildgebung die Tumorposition und Bestrahlung zu synchronisieren, was zu einer besseren Schonung der umliegenden Normalgewebe führt.

Die größte Herausforderung für Ärzte ist es, den Protonenstrahl genau an die Form des Tumors anzupassen, ohne dass umliegende Normalgewebe getroffen werden. Für bewegliche Tumoren im Brust-, Bauch- oder Becken-Bereich des Patienten ist dies bislang nicht möglich, weil Organbewegung den Strahlverlauf beeinflusst, und eine direkte Visualisierung der Organbewegung während der Behandlung fehlt. Gemeinsam mit Physikern wird deshalb nach einer Möglichkeit gesucht, wie die Organbewegung während der Bestrahlung dargestellt werden kann. Die Kombination von Protonentherapie mit einer MRT basierten Bildgebung ist die Lösung.


„Viele haben gesagt, das ist ein hoffnungsloses Unterfangen“, sagt Dr. Ing. Aswin Hoffmann, der seit mehreren Jahren von der Idee fasziniert ist, wie beide Technologien „verheiratet“ werden könnten. Das Grundproblem, mit dem das Team der Medizinischen Fakultät Carl Gustav Carus der TU Dresden und des gleichnamigen Universitätsklinikums sowie des Helmholtz-Zentrums Dresden-Rossendorf konfrontiert war ist die Tatsache, dass beide Technologien ihr eigenes Magnetfeld benötigen. Der Protonenstrahl wird mittels Magnetfeldern erzeugt, transportiert und gesteuert, und das MRT-Gerät erfordert ein sehr homogenes Magnetfeld für die Bildgebung. Beide beeinflussen sich. „Aber wie? – das war die große Frage, auf die wir eine Antwort suchten“, erklärt Hoffmann seine Motivation. „Die Magnetfelder der Strahlführung und die aus 110 Tonnen ferromagnetischem Material aufgebaute Gantry, in der die Patienten bestrahlt werden, wirken auf das Magnetfeld eines MRT-Gerätes ein. Umgekehrt wirkt das Magnetfeld des MRT-Gerätes auf den Protonenstrahl ein und lenkt diesen ab, was zu einem gekrümmten Strahlverlauf führt. Eine Tatsache, die viele Kollegen abgeschreckt hat, eben ein solches Projekt anzugehen. Wir haben es trotzdem gewagt.“ In Kooperation mit dem belgischen Hersteller der Protonenanlage IBA (Ion Beam Applications SA) und dem italienischen MRT-Produzenten Paramed MRI Unit (ASG Superconductors SpA) kombinierte Hoffmann mit seinem Team den ersten offenen MR-Scanner mit einem Protonenstrahl und verwirklichte damit den weltweit ersten Prototyp für in-beam MR-geführte Partikeltherapie. Und dieser Prototyp kann sich sehen lassen. Denn Experimente haben gezeigt, dass sich die Magnetfelder deutlich weniger beeinflussen, als zunächst erwartet. Nur wenn man ganz genau hinschaut, dann fällt auf, dass die Bilder nur um wenige Millimeter verschoben sind von denen, die bei ausgeschalteter Strahlführung aufgenommen wurden. Die Bildaufnahme selbst ist nicht etwa verzerrt wie erwartet, sondern in allen Proportionen gleich. Die Bildverschiebung und Strahlkrümmung lassen sich auf Grund der gemessenen Magnetfelder vorhersagen und somit korrigieren. „Eine Sensation“, so der Experte für MRT-geführte Strahlentherapie. „Warum dieses Experiment noch nirgendwo auf der Welt durchgeführt wurde, ist ganz einfach. Es gibt nur wenige Protonenforschungsanlagen, und nur einzige sind groß genug, um einfach mal ein MRT-Gerät hinein zu stellen.“ Weil hier in Dresden die passende Infrastruktur vorgehalten wird, ist diese Beobachtung hier möglich gewesen“, so der begeisterte Forschungsleiter Hoffmann.
Im Experimentalraum des OncoRay wurde ein offener MR-Scanner mit einem Protonenstrahl zum weltweit ersten Prototyp für in-beam MR-geführte Protonentherapie kombiniert.

Aktuell werden die nächsten Schritte des Projektes angegangen, mit dem Ziel, den weltweit ersten klinisch einsetzbaren Prototyp zu entwickeln. Die klare Vision zur Perfektionierung der Protonentherapie ist vielversprechend.


Wissenschaftliche Ansprechpartner:

OncoRay – National Center for Radiation Research in Oncology,
Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus der TU Dresden,
Helmholtz-Zentrum Dresden-Rossendorf
Medizinische Strahlenphysik
Dr. Ing. Aswin Hoffmann
Tel.: +49 351 458 3932
Fax: +49 351 458 5716
E-Mail: aswin.hoffmann@uniklinikum-dresden.de


Originalpublikation:

Physics in Medicine and Biology. 2018 Nov 22;63(23):23LT01.

DOI: 10.1088/1361-6560/aaece8


Weitere Informationen:

http://tu-dresden.de/med/

 

Hochkontrast-Bildgebung für Krebstherapie mit Protonen

 
Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

    Ein Team um den Medizinphysiker Dr. Aswin Hoffmann vom Institut für Radioonkologie – OncoRay des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) hat weltweit erstmals die Magnetresonanz-Tomographie (MRT) mit einem Protonenstrahl kombiniert. Damit haben sie nachgewiesen, dass diese weit verbreitete Bildgebungsmethode zusammen mit der Krebsbehandlung über Teilchenstrahlen prinzipiell funktionieren kann. Das eröffnet neue Möglichkeiten für eine gezielte und gewebeschonendere Krebstherapie. Ihre Ergebnisse haben die Wissenschaftler im Fachmagazin Physics in Medicine and Biology (DOI: 10.1088/1361-6560/aaece8) veröffentlicht.

    In der Onkologie gehört die Strahlentherapie seit Langem zur Standardbehandlung. Dabei wird eine festgelegte Energiemenge, auch Dosis genannt, in das Tumorgewebe eingebracht. Dort schädigt sie die Erbsubstanz der Krebszellen, verhindert dadurch deren Teilung und führt im Idealfall zum Zelltod. Heute kommt vor allem die sogenannte Photonentherapie mittels hochenergetischen Röntgenstrahlen zum Einsatz. Dabei durchdringt ein erheblicher Teil des Photonenstrahls den Körper des Patienten und bringt auch schädliche Dosis im gesunden Gewebe vor und hinter dem Tumor ein.

    Atomkerne als Waffe gegen Krebs
    Eine Alternative dazu ist die Therapie mit geladenen Atomkernen, beispielsweise mit Protonen. Diese Partikel haben eine energieabhängige Eindringtiefe und geben am Ende des Strahlverlaufs ihre maximale Dosis ab. Hinter diesem sogenannten „Bragg-Peak“ wird keine Dosis deponiert. Bei der Therapie ist die Herausforderung für die Mediziner, den Protonenstrahl genau an die Form des Tumorgewebes anzupassen und umliegendes Normalgewebe maximal zu schonen. Ihr Zielvolumen wählen sie dabei vor der Behandlung auf einer auf Röntgenstrahlung basierten Computer-Tomographie (CT)-Aufnahme aus.

    „Das hat verschiedene Nachteile“, sagt Hoffmann. „Erstens ist der Weichteilgewebe-Kontrast von CT gering und zweitens wird Dosis ins gesunde Gewebe abseits des Zielvolumens eingetragen.“ Hinzu kommt, dass die Protonentherapie anfälliger für Organbewegungen und anatomische Veränderungen als die Strahlentherapie mit Röntgenstrahlung ist. Bei Tumoren, die sich zum Beispiel während der Bestrahlung durch Atmung bewegen, ist die Treffsicherheit somit eingeschränkt. Die fehlende Möglichkeit, solche Bewegungen bildlich darzustellen, wird damit zum größten Hindernis für den Einsatz der Protonentherapie. „Wir wissen nicht sehr genau, ob der Protonenstrahl wie geplant den Tumor trifft“, so Hoffmann. Als Folge müssen Mediziner heute große Sicherheitssäume um den Tumor einplanen. „Dadurch wird aber mehr gesundes Gewebe geschädigt, als bei zielgenauer Bestrahlung nötig wäre. Das Potenzial der Protonentherapie wird also nicht vollständig ausgeschöpft.“

    Erster Prototyp für MR-geführte Partikeltherapie
    Das wollen Hoffmann und sein Team ändern. In Zusammenarbeit mit dem belgischen Hersteller der Protonenanlage IBA (Ion Beam Applications SA) hat sich seine Arbeitsgruppe zum Ziel gesetzt, die Protonentherapie mit der Echtzeit-Bildgebung über MRT zu integrieren. Denn anders als Röntgen- oder CT-Bilder liefert diese einen exzellenten Weichteilgewebe-Kontrast und ermöglicht kontinuierliche Bildaufnahmen während der Bestrahlung. „Während es zwei solcher Hybrid-Geräte bereits für den klinischen Einsatz in der MR-geführten Photonentherapie gibt, existieren für die Partikeltherapie bisher noch keine.“

    Das liegt vor allem an elektromagnetischen Wechselwirkungen zwischen MRT-Scanner und Protonentherapieanlage. Einerseits sind MRT-Scanner auf sehr homogene Magnetfelder angewiesen, um geometrisch akkurate Bilder zu liefern. Andererseits wird der Protonenstrahl in einem Zyklotron, einem Kreisbeschleuniger, erzeugt. In diesem zwingen elektromagnetische Felder die geladenen Teilchen auf eine Kreisbahn und beschleunigen sie. Gelenkt und in Form gehalten wird der Protonenstrahl ebenfalls von Magneten. Diese Magnetfelder können das homogene Magnetfeld des MRT-Scanners stören.

    „Als das Projekt vor dreieinhalb Jahren begann, waren viele internationale Kollegen skeptisch. Sie hielten es für unmöglich, einen MRT-Scanner im Protonenstrahl zu betreiben, da es zu viele elektromagnetische Störeffekte gibt“, erläutert Hoffmann. „Mit unseren Experimenten konnten wir jedoch zeigen, dass sich ein MRT-Gerät sehr wohl im Protonenstrahl betreiben lässt. Kontrastreiche Echtzeit-Bilder und gezielte Strahlführung schließen einander nicht aus.“ Ein weiteres Problem sahen viele Experten im Verhalten des Protonenstrahls. Denn wenn sich die elektrisch geladenen Teilchen im magnetischen Feld des MRT-Scanners bewegen, werden sie von der Lorentzkraft abgelenkt. Der Strahl verläuft nicht mehr gerade. Aber auch hier konnten die Dresdner Forscher belegen, dass sich diese Ablenkung vorhersagen und dadurch korrigieren lässt.

    Kompetenzzentrum mit Zyklotron und großem Experimentalraum
    Um die gegenseitigen Wechselwirkungen zu erforschen, nutzen Hoffmann und sein Team den Experimentalraum am Nationalen Zentrum für Strahlenforschung in der Onkologie – OncoRay. Die gemeinsame Forschungsplattform des HZDR, der Technischen Universität Dresden und des Uniklinikums Carl Gustav Carus wurde 2005 als Zentrum für Innovationskompetenz gegründet. Seit 2014 werden im OncoRay-Gebäude an der damals gegründeten Universitäts Protonen Therapie Dresden (UPTD) Patienten mit der Protonentherapie behandelt. Heute forschen am OncoRay mehr als 120 Wissenschaftler an innovativen Ansätzen und Technologien für die Strahlentherapie.

    „Unsere Mission ist es, die Protonentherapie biologisch zu individualisieren und technologisch bis an die physikalischen Grenzen zu optimieren“, sagt Hoffmann, der die HZDR-Arbeitsgruppe Magnetresonanz-geführte Strahlentherapie leitet. Dazu verfügt das OncoRay über ein Zyklotron, das den Protonenstrahl einerseits in den Therapieraum, andererseits in einen Experimentalraum leitet. Letzteren nutzten Hoffmann und seine Kollegen für ihre Forschungsarbeiten. Mit Hilfe von IBA und Paramed MRI Unit (ASG Superconductors SpA) installierten sie ein offenes MRT-Gerät im Strahlengang der Protonen: der weltweit erste Prototyp für MR-geführte Partikeltherapie. „Zum Glück gibt es hier einen Experimentalraum, der groß genug für einen MRT-Scanner ist. Das ist eines der Alleinstellungsmerkmale von OncoRay.“

    Kniephantom, Fleischwurst und berechenbare Ablenkung
    Für ihre Experimente mit dem ersten Prototyp griffen sie zuerst auf ein sogenanntes Kniephantom zurück. Das ist ein kleiner Plastikzylinder, der mit einer wässrigen Kontrastflüssigkeit und unterschiedlich geformten Plastikstücken gefüllt ist. Damit führten Hoffmann und sein Team quantitative Analysen zur Bildqualität durch. In einer zweiten Versuchsreihe nutzten die Wissenschaftler ein Stück Dresdner Fleischwurst. „Als die niederländische Forschergruppe 2009 ihre Bildgebung für die MR-geführte Photonentherapie untersuchte, verwendete sie ein Stück Schweinefleisch“, erzählt Hoffmann. „Australische Forscher demonstrierten 2016 ihr MR-Photonentherapie Gerät mit einem Kängurusteak. Für unseren Prototyp der MR-geführten Partikeltherapie wollten wir ebenfalls etwas Regionaltypisches verwenden und griffen deshalb auf die Dresdner Fleischwurst zurück.“ Beide Versuchsreihen mit Phantom und Fleischwurst zeigten, dass durch die Magnetfelder der Protonentherapie keine Bildverzerrungen auftreten, wohl aber kleine Verschiebungen im MRT-Bild, die sich präzise vorhersagen und deshalb korrigieren lassen.

    Aktuell werden die nächsten Schritte des Projektes angegangen, mit dem Ziel, den weltweit ersten, klinisch einsetzbaren Prototyp für die MR-geführte Partikeltherapie zu entwickeln.

    _Publikation:
    S.M. Schellhammer, A.L. Hoffmann, S. Gantz, J. Smeets, E. van der Kraaij, S. Quets, S. Pieck, L. Karsch, J. Pawelke: Integrating a low-field open MR scanner with a static proton research beam line: proof of concept, in Physics in Medicine & Biology, 2018 (DOI: 10.1088/1361-6560/aaece8)

    _Weitere Informationen:
    Dr. Aswin Hoffmann
    Helmholtz-Zentrum Dresden-Rossendorf
    Institut für Radioonkologie – OncoRay
    Tel. +49 351 458-3932
    E-Mail: aswin.hoffmann@hzdr.de

    _Medienkontakt:
    Simon Schmitt | Wissenschaftsredakteur
    Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
    Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Bautzner Landstr. 400, 01328 Dresden | www.hzdr.de

    Das Nationale Zentrum für Strahlenforschung in der Onkologie – OncoRay ist eine institutionenübergreifende Forschungsplattform mit einem besonderen Fokus auf Translationsforschung. Damit ist gemeint, dass Ergebnisse aus der Grundlagenforschung gezielt zum Wohle von Patienten weiterentwickelt und in klinischen Studien getestet werden sollen. Ziel ist es, die Behandlung von Krebserkrankungen durch eine biologisch individualisierte, technologisch optimale Strahlentherapie entscheidend zu verbessern. Hierfür bündelt OncoRay die Stärken der drei Trägerinstitutionen – Universitätsklinikum Carl Gustav Carus, TU Dresden und Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Rund 120 Wissenschaftler aus aller Welt arbeiten am OncoRay in fachübergreifenden Programmen mit Forschungsschwerpunkten in den Bereichen Medizin, Physik, Biologie und Informationswissenschaften.

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
    • Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
    • Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
    • Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
    Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
    Es ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.


    Wissenschaftliche Ansprechpartner:

    Dr. Aswin Hoffmann
    Helmholtz-Zentrum Dresden-Rossendorf
    Institut für Radioonkologie – OncoRay
    Tel. +49 351 458-3932
    E-Mail: aswin.hoffmann@hzdr.de


    Originalpublikation:

    S.M. Schellhammer, A.L. Hoffmann, S. Gantz, J. Smeets, E. van der Kraaij, S. Quets, S. Pieck, L. Karsch, J. Pawelke: Integrating a low-field open MR scanner with a static proton research beam line: proof of concept, in Physics in Medicine & Biology, 2018 (DOI: 10.1088/1361-6560/aaece8)


    Weitere Informationen:

    https://www.hzdr.de/presse/kombination_mrt_protonentherapie